Neuroprotective potential of a viral vector system induced by a neurological insult PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Ozawa, C. R., Ho, J. J., Tsai, D. J., Ho, D. Y., Sapolsky, R. M. 2000; 97 (16): 9270-9275

Abstract

Gene transfer into neurons via viral vectors for protection against acute necrotic insults has generated considerable interest. Most studies have used constitutive vector systems, limiting the ability to control transgene expression in a dose-dependent, time-dependent, or reversible manner. We have constructed defective herpes simplex virus vectors designed to be induced by necrotic neurological insults themselves. Such vectors contain a synthetic glucocorticoid-responsive promoter, taking advantage of the almost uniquely high levels of glucocorticoids-adrenal stress steroids-secreted in response to such insults. We observed dose-responsive and steroid-specific induction by endogenous and synthetic glucocorticoids in hippocampal cultures. Induction was likely to be rapid enough to allow transgenic manipulation of relatively early steps in the cascade of necrotic neuron death. The protective potential of such a vector was tested by inclusion of a neuroprotective transgene (the Glut-1 glucose transporter). Induction of this vector by glucocorticoids decreased glutamatergic excitotoxicity in culture. Finally, both exogenous glucocorticoids and excitotoxic seizures induced reporter gene expression driven from a glucocorticoid-responsive herpes simplex virus vector in the hippocampus in vivo.

View details for Web of Science ID 000088608000091

View details for PubMedID 10908682

View details for PubMedCentralID PMC16857