New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. You can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
Vismione B Interferes with Trypanosoma cruzi Infection of Vero Cells and Human Stem Cell-Derived Cardiomyocytes.
Vismione B Interferes with Trypanosoma cruzi Infection of Vero Cells and Human Stem Cell-Derived Cardiomyocytes. The American journal of tropical medicine and hygiene Sass, G., Tsamo, A. T., Chounda, G. A., Nangmo, P. K., Sayed, N., Bozzi, A., Wu, J. C., Nkengfack, A. E., Stevens, D. A. 2019Abstract
Traditional African medicine is a source of new molecules that might be useful in modern therapeutics. We tested ten limonoids, six quinones, one xanthone, one alkaloid, and one cycloartane, isolated from four Cameroonian medicinal plants, and one plant-associated endophytic fungus, against Trypanosoma cruzi, the etiological agent of Chagas disease (CD). Vero cells, or human-induced pluripotent stem cells (hiPSC)-derived cardiomyocytes (hiPSC-CM) were infected with T. cruzi trypomastigotes (discrete typing unit types I or II). Infection took place in the presence of drugs, or 24 hours before drug treatment. Forty-eight hours after infection, infection rates and parasite multiplication were evaluated by Giemsa stain. Cell metabolism was measured to determine functional integrity. In Vero cells, several individual molecules significantly affected T. cruzi infection and multiplication with no, or minor, effects on cell viability. Reduced infection rates and multiplication by the quinone vismione B was superior to the commonly used therapeutic benznidazole (BNZ). The vismione B concentration inhibiting 50% of T. cruzi infection (IC50) was 1.3 M. When drug was applied after infection, anti-Trypanosoma effects of vismione B [10 M) were significantly stronger than effects of BNZ (23 M). Furthermore, in hiPSC-CM cultures, infection and multiplication rates in the presence of vismione B (10 M) were significantly lower than in BNZ (11.5 M), without showing signs of cytotoxicity. Our data indicate that vismione B is more potent against T. cruzi infection and multiplication than BNZ, with stronger effects on established infection. Vismione B, therefore, might become a promising lead molecule for treatment development for CD.
View details for DOI 10.4269/ajtmh.19-0350
View details for PubMedID 31571568