Software-Based Phase Control, Video-Rate Imaging, and Real-Time Mosaicing With a Lissajous-Scanned Confocal Microscope IEEE TRANSACTIONS ON MEDICAL IMAGING Loewke, N. O., Qiu, Z., Mandella, M. J., Ertsey, R., Loewke, A., Gunaydin, L. A., Rosenthal, E. L., Contag, C. H., Solgaard, O. 2020; 39 (4): 1127–37


We present software-based methods for automatic phase control and for mosaicing high-speed, Lissajous-scanned images. To achieve imaging speeds fast enough for mosaicing, we first increase the image update rate tenfold from 3 to 30 Hz, then vertically interpolate each sparse image in real-time to eliminate fixed pattern noise. We validate our methods by imaging fluorescent beads and automatically maintaining phase control over the course of one hour. We then image fixed mouse brain tissues at varying update rates and compare the resulting mosaics. Using reconstructed image data as feedback for phase control eliminates the need for phase sensors and feedback controllers, enabling long-term imaging experiments without additional hardware. Mosaicing subsampled images results in video-rate imaging speeds, nearly fully recovered spatial resolution, and millimeter-scale fields of view.

View details for DOI 10.1109/TMI.2019.2942552

View details for Web of Science ID 000525265800029

View details for PubMedID 31567074