Just eat it: A review of CD47 and SIRP-alpha antagonism. Seminars in oncology Oronsky, B., Carter, C., Reid, T., Brinkhaus, F., Knox, S. J. 2020

Abstract

The mammalian immune system consists of two distinct arms, nonspecific innate and more specific adaptive, with the innate immune response as the first line of defense and protection, which primes and amplifies subsequent adaptive responses. On the basis of this binary immune interplay, stimulation of T cells through checkpoint inhibitors (CIs), which bypasses innate involvement, seems likely to engender suboptimal or incomplete anticancer immunity, given that the successful induction of effect or responses depends on two-way innate/adaptive coordination. Indeed, the majority of patients-70%-80%, do not respond to CIs, which is potentially problematic if access to more optimal standard therapies is withheld or delayed in favor of ineffective or only marginally effective anti-PD-1/PD-L1 treatment. Therefore, stimulation of the innate immune response in combination with CIs (or other inducers of T cell cytotoxicity) has the potential to make the immune system "whole" and thereby to enhance and broaden the anti-tumor activity of PD-1/PD-L1 inhibitors for example, in relatively nonimmunogenic or "cold" tumor types. A critical innate macrophage immune checkpoint and druggable target is the antiphagocytic and "marker of self" CD47-SIRPalpha pathway, which is co-opted by cancer cells to mediate escape from immune-mediated clearance and checkpoint inhibition. This review summarizes the status of key CD47 antagonists in clinical trials, including the biologics, Hu5F9-G4 (5F9), TTI-621, and ALX148, as well as the small molecule, RRx-001, now in a Phase 3 clinical trial, which has not been previously included in CD47-SIRPalpha reviews focused on biologics. Hu5F9-G4 (5F9), TTI-621, ALX148, and RRx-001 are chosen as compounds with potentially promising data that have advanced the farthest in clinical development.

View details for DOI 10.1053/j.seminoncol.2020.05.009

View details for PubMedID 32517874