Machine learning in neurosurgery: a global survey. Acta neurochirurgica Staartjes, V. E., Stumpo, V., Kernbach, J. M., Klukowska, A. M., Gadjradj, P. S., Schroder, M. L., Veeravagu, A., Stienen, M. N., van Niftrik, C. H., Serra, C., Regli, L. 2020


BACKGROUND: Recent technological advances have led to the development and implementation of machine learning (ML) in various disciplines, including neurosurgery. Our goal was to conduct a comprehensive survey of neurosurgeons to assess the acceptance of and attitudes toward ML in neurosurgical practice and to identify factors associated with its use.METHODS: The online survey consisted of nine or ten mandatory questions and was distributed in February and March 2019 through the European Association of Neurosurgical Societies (EANS) and the Congress of Neurosurgeons (CNS).RESULTS: Out of 7280 neurosurgeons who received the survey, we received 362 responses, with a response rate of 5%, mainly in Europe and North America. In total, 103 neurosurgeons (28.5%) reported using ML in their clinical practice, and 31.1% in research. Adoption rates of ML were relatively evenly distributed, with 25.6% for North America, 30.9% for Europe, 33.3% for Latin America and the Middle East, 44.4% for Asia and Pacific and 100% for Africa with only two responses. No predictors of clinical ML use were identified, although academic settings and subspecialties neuro-oncology, functional, trauma and epilepsy predicted use of ML in research. The most common applications were for predicting outcomes and complications, as well as interpretation of imaging.CONCLUSIONS: This report provides a global overview of the neurosurgical applications of ML. A relevant proportion of the surveyed neurosurgeons reported clinical experience with ML algorithms. Future studies should aim to clarify the role and potential benefits of ML in neurosurgery and to reconcile these potential advantages with bioethical considerations.

View details for DOI 10.1007/s00701-020-04532-1

View details for PubMedID 32812067