Exosome miR-501-3p Elevation Contributes to Progression of Vascular Stiffness. Circulation reports Toyama, K., Igase, M., Spin, J. M., Abe, Y., Javkhlant, A., Okada, Y., Wagenhauser, M. U., Schelzig, H., Tsao, P. S., Mogi, M. 2021; 3 (3): 170–77

Abstract

Background: Tight junction (TJ) disruption and dysfunction are involved in the progression of arteriosclerosis. miR-501-3p regulates endothelial TJ protein-1, resulting in TJ disruption. Because exosomal microRNAs can travel to distant tissues and influence cell behavior, patients with elevated miR-501-3p may experience accelerated vascular disease progression secondary to miR-501-3p-induced reductions in TJ. This study investigated whether plasma exosome miR-501-3p levels are associated with vascular stiffness, an indicator for arteriosclerotic changes. Methods and Results: Fifty-one subjects (mean [±SD] age 70±8 years, 37% male) enrolled in a medical checkup program were recruited to the study. Brachial-ankle arterial pulse wave velocity (baPWV) and plasma exosome miR-501-3p expression were measured. Patients were divided into 2 groups depending on whether their miR-501-3p ?Ct values were above ("High"; n=24) or below ("Low"; n=27) the cut-off levels determined by receiver operating characteristic (ROC) curve analysis. Median (interquartile range) baPWV levels were significantly higher in the miR-501-3p High than Low group (1,664 [1,496-1,859] vs. 1,450 [1,353-1,686] cm/s, respectively; P<0.05). Multivariate logistic regression analysis showed a significant association between increased baPWV and High miR-501-3p expression (odds ratio 4.66). At follow-up visits (mean 62 months later), baPWV remained significantly higher in the miR-501-3p High than Low group (1,830 [1,624-2,056] vs. 1,620 [1,377-1,816] cm/s, respectively; P<0.05). Conclusions: High expression levels of exosome miR-501-3p contribute to arteriosclerotic changes.

View details for DOI 10.1253/circrep.CR-20-0135

View details for PubMedID 33738350