New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. You can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
The unique biology of lymphatic edema.
The unique biology of lymphatic edema. Lymphatic research and biology Rockson, S. G. 2009; 7 (2): 97-100Abstract
Sadly, the subject of lymphatic vascular insufficiency continues to engender relative neglect by health care professionals, which represents a source of frustration and fear among patients. A re-consideration of the unique, complex biology of lymphatic vascular disorders has the capacity both to reinvigorate interest and facilitate the implementation of the correct, existing treatment interventions for individuals affected by these disease states. While most of this complex lymphatic biology remains somewhat elusive, growing insights into the molecular mechanisms of lymphatic development and repair have been instructive. Present and future considerations in lymphedema diagnosis and management must acknowledge the unique tissue biology of this disorder. Many changes are unique to the lymphatic mechanisms of chronic edema. The profound stimulus to collagen deposition in the integument seems to be unique to chronic lymphatic edema, although this biology remains largely unexplicated. Several lines of evidence also suggest that lymphatic function has a unique and important influence upon adipose biology. Molecular investigation of murine models of human acquired lymphedema are beginning to shed light on these processes. Such focused mechanistic, approaches to the study of lymphedema and other lymphatic diseases are vital, as we attempt to expand our insights into the complex biology of lymphedema and its potential responsiveness to pharmacologic control and molecular intervention, prevention, and reversal.
View details for DOI 10.1089/lrb.2009.7202
View details for PubMedID 19522679