Brain Arteriovenous Malformation Presurgical Planning with Open-source Horos™ Software. World neurosurgery Mandel, M., Li, Y., Figueiredo, E. G., Teixeira, M. J., Steinberg, G. K. 2021

Abstract

Surgical planning for treating brain arteriovenous malformations (bAVMs) is challenging because it entails visualizing 3-dimensional (3D) relationships between the nidus, its feeding and en passage arteries, and draining veins. Surgical experience in developing the capacity to mentally visualize pathological bAVM angio-architecture could be complemented by this software, and thus potentially lower the steep learning curve for understanding complex bAVM angio-architecture. We evaluated the clinical application of freely available online 3D reconstruction software in facilitating visualization of AVM angio-architecture for pre-surgical planning.Preoperative DICOM MRI/MRA images of 56 superficial bAVMs from 2013-2018 were processed using open-source software Horos™. 3D rendered images were compared with the surgical view to evaluate software accuracy and determine its value as a pre-operative tool. 3-D reconstructed images were compared to intraoperative recordings.A useful image identifying both the main feeding artery and draining vein was achieved in 35/56 cases (62.5%). Reconstructions of small AVMs (nidus = 2 cm) and those located within the temporal or cerebellar cortex were less useful due to soft tissue artifacts. Frontal and parietal lobe lesions had significantly higher rates of identifying feeding arteries and draining veins (p < 0.05).Pre-surgical planning for resection of superficial bAVMs using Horos™ software allows for a comprehensive 3D analysis of the bAVM angio-architecture. This technique is most useful for frontal and parietal lobe lesions, and aids the surgeon in formulating an optimal surgical strategy. The 3D reconstruction of the brain surface offers a surgical map not influenced by brain shift.

View details for DOI 10.1016/j.wneu.2021.09.081

View details for PubMedID 34582999