Massive Transfusion Protocols: The Role of Aggressive Resuscitation Versus Product Ratio in Mortality Reduction JOURNAL OF THE AMERICAN COLLEGE OF SURGEONS Riskin, D. J., Tsai, T. C., Riskin, L., Hernandez-Boussard, T., Purtill, M., Maggio, P. M., Spain, D. A., Brundage, S. I. 2009; 209 (2): 198-205

Abstract

Exsanguinating hemorrhage necessitating massive blood product transfusion is associated with high mortality rates. Recent data suggest that altering the fresh frozen plasma to packed red blood cell ratio (FFP:PRBC) results in significant mortality reductions. Our purpose was to evaluate mortality and blood product use in the context of a newly initiated massive transfusion protocol (MTP).In July 2005, our American College of Surgeons-verified Level I trauma center implemented an MTP supporting a 1:1.5 FFP:PRBC ratio, improved communications, and enhanced systems flow to optimize rapid blood product availability. During the 4 years surrounding protocol implementation, we reviewed data on trauma patients directly admitted through the emergency department and requiring 10 or more units PRBCs during the first 24 hours.For the 2 years before and subsequent to MTP initiation, there were 4,223 and 4,414 trauma activations, of which 40 and 37 patients, respectively, met study criteria. The FFP:PRBC ratios were identical, at 1:1.8 and 1:1.8 (p = 0.97). Despite no change in FFP:PRBC ratio, mortality decreased from 45% to 19% (p = 0.02). Other significant findings included decreased mean time to first product: cross-matched RBCs (115 to 71 minutes; p = 0.02), FFP (254 to 169 minutes; p = 0.04), and platelets (418 to 241 minutes; p = 0.01).MTP implementation is associated with mortality reductions that have been ascribed principally to increased plasma use and decreased FFP:PRBC ratios. Our study found a significant reduction in mortality despite unchanged FFP:PRBC ratios and equivalent overall mean numbers of transfusions. Our data underscore the importance of expeditious product availability and emphasize that massive transfusion is a complex process in which product ratio and time to transfusion represent only the beginning of understanding.

View details for DOI 10.1016/j.jamcollsurg.2009.04.016

View details for Web of Science ID 000268747300006

View details for PubMedID 19632596