Computational Biological Modeling Identifies PD-(L)1 Immunotherapy Sensitivity Among Molecular Subgroups of KRAS-Mutated Non-Small-Cell Lung Cancer. JCO precision oncology Padda, S. K., Aredo, J. V., Vali, S., Singh, N. K., Vasista, S. M., Kumar, A., Neal, J. W., Abbasi, T., Wakelee, H. A. 2021; 5: 153-162


KRAS-mutated (KRASMUT) non-small-cell lung cancer (NSCLC) is emerging as a heterogeneous disease defined by comutations, which may confer differential benefit to PD-(L)1 immunotherapy. In this study, we leveraged computational biological modeling (CBM) of tumor genomic data to identify PD-(L)1 immunotherapy sensitivity among KRASMUT NSCLC molecular subgroups.In this multicohort retrospective analysis, the genotype clustering frequency ranked method was used for molecular clustering of tumor genomic data from 776 patients with KRASMUT NSCLC. These genomic data were input into the CBM, in which customized protein networks were characterized for each tumor. The CBM evaluated sensitivity to PD-(L)1 immunotherapy using three metrics: programmed death-ligand 1 expression, dendritic cell infiltration index (nine chemokine markers), and immunosuppressive biomarker expression index (14 markers).Genotype clustering identified eight molecular subgroups and the CBM characterized their shared cancer pathway characteristics: KRASMUT/TP53MUT, KRASMUT/CDKN2A/B/CMUT, KRASMUT/STK11MUT, KRASMUT/KEAP1MUT, KRASMUT/STK11MUT/KEAP1MUT, KRASMUT/PIK3CAMUT, KRAS MUT/ATMMUT, and KRASMUT without comutation. CBM identified PD-(L)1 immunotherapy sensitivity in the KRASMUT/TP53MUT, KRASMUT/PIK3CAMUT, and KRASMUT alone subgroups and resistance in the KEAP1MUT containing subgroups. There was insufficient genomic information to elucidate PD-(L)1 immunotherapy sensitivity by the CBM in the KRASMUT/CDKN2A/B/CMUT, KRASMUT/STK11MUT, and KRASMUT/ATMMUT subgroups. In an exploratory clinical cohort of 34 patients with advanced KRASMUT NSCLC treated with PD-(L)1 immunotherapy, the CBM-assessed overall survival correlated well with actual overall survival (r = 0.80, P < .001).CBM identified distinct PD-(L)1 immunotherapy sensitivity among molecular subgroups of KRASMUT NSCLC, in line with previous literature. These data provide proof-of-concept that computational modeling of tumor genomics could be used to expand on hypotheses from clinical observations of patients receiving PD-(L)1 immunotherapy and suggest mechanisms that underlie PD-(L)1 immunotherapy sensitivity.

View details for DOI 10.1200/PO.20.00172

View details for PubMedID 34994595