Small molecule antagonists of Tcf4/beta-catenin complex inhibit the growth of HCC cells in vitro and in vivo INTERNATIONAL JOURNAL OF CANCER Wei, W., Chua, M., Grepper, S., So, S. 2010; 126 (10): 2426-2436


Hepatocellular carcinoma (HCC) is the 5th most common cancer worldwide. It is intrinsically resistant toward standard chemotherapy, making it imperative to develop novel selective chemotherapeutic agents. The Wnt/beta-catenin pathway plays critical roles in development and oncogenesis, and is dysregulated in HCC. Our study aims to evaluate the activity of 3 small molecule antagonists of the Tcf4/beta-catenin complex (PKF118-310, PKF115-584 and CGP049090) on HCC cell lines in vitro and in vivo. All 3 chemicals displayed dose-dependent cytotoxicity in vitro against all 3 HCC cell lines (HepG2, Hep40 and Huh7), but were at least 10 times less cytotoxic to normal hepatocytes (from 3 donors) by using ATP assay. In HepG2 and Huh7 cells, treatment with the antagonists decreased Tcf4/beta-catenin binding capability and transcriptional activity, associated with downregulation of the endogenous Tcf4/ beta-catenin target genes c-Myc, cyclin D1 and survivin. In HepG2 and Huh7 cells, treatment with the antagonists induced apoptosis and cell cycle arrest at the G1/S phase. All antagonists suppressed in vivo tumor growth in a HepG2 xenograft model, associated with apoptosis and reduced c-Myc, cyclin D1 and survivin expressions. Our results suggest that these 3 antagonists of the Tcf4/beta-catenin complex are potential chemotherapeutic agents which may offer a pathway specific option for the clinical management of HCC.

View details for DOI 10.1002/ijc.24810

View details for Web of Science ID 000276928700016

View details for PubMedID 19662654