Detection of bacterial co-infections and prediction of fatal outcomes in COVID-19 patients presenting to the emergency department using a 29 mRNA host response classifier. medRxiv : the preprint server for health sciences Ram-Mohan, N., Rogers, A. J., Blish, C. A., Nadeau, K. C., Zudock, E. J., Kim, D., Quinn, J. V., Sun, L., Liesenfeld, O., Stanford COVID-19 Biobank Study Group, Yang, S. 2022


Objective: Clinicians in the emergency department (ED) face challenges in concurrently assessing patients with suspected COVID-19 infection, detecting bacterial co-infection, and determining illness severity since current practices require separate workflows. Here we explore the accuracy of the IMX-BVN-3/IMX-SEV-3 29 mRNA host response classifiers in simultaneously detecting SARS-CoV-2 infection, bacterial co-infections, and predicting clinical severity of COVID-19.Methods: 161 patients with PCR-confirmed COVID-19 (52.2% female, median age 50.0 years, 51% hospitalized, 5.6% deaths) were enrolled at the Stanford Hospital ED. RNA was extracted (2.5 mL whole blood in PAXgene Blood RNA) and 29 host mRNAs in response to the infection were quantified using Nanostring nCounter.Results: The IMX-BVN-3 classifier identified SARS-CoV-2 infection in 151 patients with a sensitivity of 93.8%. Six of 10 patients undetected by the classifier had positive COVID tests more than 9 days prior to enrolment and the remaining oscillated between positive and negative results in subsequent tests. The classifier also predicted that 6 (3.7%) patients had a bacterial co-infection. Clinical adjudication confirmed that 5/6 (83.3%) of the patients had bacterial infections, i.e. Clostridioides difficile colitis (n=1), urinary tract infection (n=1), and clinically diagnosed bacterial infections (n=3) for a specificity of 99.4%. 2/101 (2.8%) patients in the IMX-SEV-3 Low and 7/60 (11.7%) in the Moderate severity classifications died within thirty days of enrollment.Conclusions: IMX-BVN-3/IMX-SEV-3 classifiers accurately identified patients with COVID-19, bacterial co-infections, and predicted patientsa risk of death. A point-of-care version of these classifiers, under development, could improve ED patient management including more accurate treatment decisions and optimized resource utilization.

View details for DOI 10.1101/2022.03.14.22272394

View details for PubMedID 35313598