Human Coronary Plaque T Cells Are Clonal and Cross-React to Virus and Self. Circulation research Roy Chowdhury, R., D'Addabbo, J., Huang, X., Veizades, S., Sasagawa, K., Louis, D. M., Cheng, P., Sokol, J., Jensen, A., Tso, A., Shankar, V., Wendel, B. S., Bakerman, I., Liang, G., Koyano, T., Fong, R., Nau, A., Ahmad, H., Gopakumar, J. K., Wirka, R., Lee, A., Boyd, J., Woo, Y. J., Quertermous, T., Gulati, G., Jaiswal, S., Chien, Y. H., Chan, C., Davis, M. M., Nguyen, P. K. 2022: 101161CIRCRESAHA121320090

Abstract

Once considered primarily a disorder of lipid deposition, coronary artery disease is an incurable, life-threatening disease that is now also characterized by chronic inflammation notable for the buildup of atherosclerotic plaques containing immune cells in various states of activation and differentiation. Understanding how these immune cells contribute to disease progression may lead to the development of novel therapeutic strategies.We used single-cell technology and in vitro assays to interrogate the immune microenvironment of human coronary atherosclerotic plaque at different stages of maturity.In addition to macrophages, we found a high proportion of aß T cells in the coronary plaques. Most of these T cells lack high expression of CCR7 and L-selectin, indicating that they are primarily antigen-experienced, memory cells. Notably, nearly one-third of these cells express the HLA-DRA surface marker, signifying activation through their TCRs (T-cell receptors). Consistent with this, TCR repertoire analysis confirmed the presence of activated aß T cells (CD4

View details for DOI 10.1161/CIRCRESAHA.121.320090

View details for PubMedID 35430876