Hepatogenic Potential and Liver Regeneration Effect of Human Liver-derived Mesenchymal-Like Stem Cells CELLS Lee, J., Choi, J., Kang, S., Kim, J., Lee, R., So, S., Yoon, Y., Kirchner, V. A., Song, G., Hwang, S., Lee, S., Kang, E., Tak, E. 2020; 9 (6)


Human liver-derived stem cells (hLD-SCs) have been proposed as a possible resource for stem cell therapy in patients with irreversible liver diseases. However, it is not known whether liver resident hLD-SCs can differentiate toward a hepatic fate better than mesenchymal stem cells (MSCs) obtained from other origins. In this study, we compared the differentiation ability and regeneration potency of hLD-SCs with those of human umbilical cord matrix-derived stem cells (hUC-MSCs) by inducing hepatic differentiation. Undifferentiated hLD-SCs expressed relatively high levels of endoderm-related markers (GATA4 and FOXA1). During directed hepatic differentiation supported by two small molecules (Fasudil and 5-azacytidine), hLD-SCs presented more advanced mitochondrial respiration compared to hUC-MSCs. Moreover, hLD-SCs featured higher numbers of hepatic progenitor cell markers on day 14 of differentiation (CPM and CD133) and matured into hepatocyte-like cells by day 7 through 21 with increased hepatocyte markers (ALB, HNF4A, and AFP). During in vivo cell transplantation, hLD-SCs migrated into the liver of ischemia-reperfusion injury-induced mice within 2 h and relieved liver injury. In the thioacetamide (TAA)-induced liver injury mouse model, transplanted hLD-SCs trafficked into the liver and spontaneously matured into hepatocyte-like cells within 14 days. These results collectively suggest that hLD-SCs hold greater hepatogenic potential, and hepatic differentiation-induced hLD-SCs may be a promising source of stem cells for liver regeneration.

View details for DOI 10.3390/cells9061521

View details for Web of Science ID 000550035400001

View details for PubMedID 32580448

View details for PubMedCentralID PMC7348751