Mechanism of an Amphipathic alpha-Helical Peptide's Antiviral Activity Involves Size-Dependent Virus Particle Lysis ACS CHEMICAL BIOLOGY Cho, N., Dvory-Sobol, H., Xiong, A., Cho, S., Frank, C. W., Glenn, J. S. 2009; 4 (12): 1061-1067

Abstract

The N-terminal region of the hepatitis C virus (HCV) nonstructural protein NS5A contains an amphipathic alpha-helix that is necessary and sufficient for NS5A membrane association. A synthetic peptide (AH) comprising this amphipathic helix is able to lyse lipid vesicles that serve as a model system for virus particles. Based on quartz crystal microbalance-dissipation (QCM-D) experiments, the degree of vesicle rupturing was found to be inversely related to vesicle size, with maximal activity in the size range of several medically important viruses. In order to confirm and further study vesicle rupture, dynamic light scattering (DLS) and atomic force microscopy (AFM) experiments were also performed. The size dependence of vesicle rupturing helps explain the peptide's observed effect on the infectivity of a wide range of viruses. Further, in vitro studies demonstrated that AH peptide treatment significantly decreased the infectivity of HCV particles. Thus, the AH peptide might be used to rupture HCV particles extra-corporally (for HCV prevention) and within infected individuals (for HCV therapy).

View details for DOI 10.1021/cb900149b

View details for PubMedID 19928982