New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. You can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
Role of Bach-1 in regulation of heme oxygenase-1 in human liver cells - Insights from studies with small interfering RNAs
Role of Bach-1 in regulation of heme oxygenase-1 in human liver cells - Insights from studies with small interfering RNAs JOURNAL OF BIOLOGICAL CHEMISTRY Shan, Y., Lambrecht, R. W., Ghaziani, T., Donohue, S. E., Bonkovsky, H. L. 2004; 279 (50): 51769-51774Abstract
Heme oxygenase-1 is an antioxidant defense enzyme that converts heme to biliverdin, iron, and carbon monoxide. Bach-1 is a bZip protein that forms heterodimers with small Maf proteins and was reported recently to down-regulate the HO-1 gene in mice. Using small interfering RNAs targeted to human Bach-1 mRNA, we investigated whether modulation of human hepatic Bach-1 expression by small interfering (si)RNA technology influences heme oxygenase-1 gene expression. We found that Bach-1 siRNAs transfected into Huh-7 cells significantly reduced Bach-1 mRNA and protein levels approximately 80%, compared with non siRNA-treated cells. In contrast, transfection with the same amounts of nonspecific control duplexes or LaminB2-duplex did not reduce Bach-1 mRNA or protein levels, confirming the specificity of Bach-1 siRNA. Expression of the heme oxygenase-1 gene in Bach-1 siRNA-transfected cells was up-regulated 7-fold, compared with cells without Bach-1 siRNA. The effect of increasing concentrations of heme to up-regulate levels of heme oxygenase-1 was more pronounced when Bach-1 siRNA was present. Taken together, these results indicated that Bach-1 has a specific and selective ability to repress expression of human hepatic heme oxygenase-1. Silencing of Bach-1 by siRNAs is a useful method for up-regulating HO-1 gene expression. Exogenous heme produces additional up-regulation, beyond that produced by Bach-1 siRNAs, suggesting that heme does not act solely through its effects on Bach-1.
View details for DOI 10.1074/jbc.M409463200
View details for Web of Science ID 000225493400009
View details for PubMedID 15465821