Targeting CREB for Cancer Therapy: Friend or Foe CURRENT CANCER DRUG TARGETS Xiao, X., Li, B. X., Mitton, B., Ikeda, A., Sakamoto, K. M. 2010; 10 (4): 384-391

Abstract

The cyclic-AMP response element-binding protein (CREB) is a nuclear transcription factor activated by phosphorylation at Ser133 by multiple serine/threonine (Ser/Thr) kinases. Upon phosphorylation, CREB binds the transcriptional co-activator, CBP (CREB-binding protein), to initiate CREB-dependent gene transcription. CREB is a critical regulator of cell differentiation, proliferation and survival in the nervous system. Recent studies have shown that CREB is involved tumor initiation, progression and metastasis, supporting its role as a proto-oncogene. Overexpression and over-activation of CREB were observed in cancer tissues from patients with prostate cancer, breast cancer, non-small-cell lung cancer and acute leukemia while down-regulation of CREB in several distinct cancer cell lines resulted in inhibition of cell proliferation and induction of apoptosis, suggesting that CREB may be a promising target for cancer therapy. Although CREB, as a transcription factor, is a challenging target for small molecules, various small molecules have been discovered to inhibit CREB phosphorylation, CREB-DNA, or CREB-CBP interaction. These results suggest that CREB is a suitable transcription factor for drug targeting and therefore targeting CREB could represent a novel strategy for cancer therapy.

View details for PubMedID 20370681