Differences in Patellofemoral Kinematics between Weight-Bearing and Non-Weight-Bearing Conditions in Patients with Patellofemoral Pain JOURNAL OF ORTHOPAEDIC RESEARCH Draper, C. E., Besier, T. F., Fredericson, M., Santos, J. M., Beaupre, G. S., Delp, S. L., Gold, G. E. 2011; 29 (3): 312-317

Abstract

Patellar maltracking is thought to be one source of patellofemoral pain. Measurements of patellar tracking are frequently obtained during non-weight-bearing knee extension; however, pain typically arises during highly loaded activities, such as squatting, stair climbing, and running. It is unclear whether patellofemoral joint kinematics during lightly loaded tasks replicate patellofemoral joint motion during weight-bearing activities. The purpose of this study was to: evaluate differences between upright, weight-bearing and supine, non-weight-bearing joint kinematics in patients with patellofemoral pain; and evaluate whether the kinematics in subjects with maltracking respond differently to weight-bearing than those in nonmaltrackers. We used real-time magnetic resonance imaging to visualize the patellofemoral joint during dynamic knee extension from 30° to 0° of knee flexion during two conditions: upright, weight-bearing and supine, non-weight-bearing. We compared patellofemoral kinematics measured from the images. The patella translated more laterally during the supine task compared to the weight-bearing task for knee flexion angles between 0° and 5° (p = 0.001). The kinematics of the maltrackers responded differently to joint loading than those of the non-maltrackers. In subjects with excessive lateral patellar translation, the patella translated more laterally during upright, weight-bearing knee extension for knee flexion angles between 25° and 30° (p = 0.001). However, in subjects with normal patellar translation, the patella translated more laterally during supine, non-weight-bearing knee extension near full extension (p = 0.001). These results suggest that patellofemoral kinematics measured during supine, unloaded tasks do not accurately represent the joint motion during weight-bearing activities.

View details for DOI 10.1002/jor.21253

View details for Web of Science ID 000287173500002

View details for PubMedID 20949442