New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. You can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
Birth Anomalies and Obstetric History as Risks for Childhood Tumors of the Central Nervous System
Birth Anomalies and Obstetric History as Risks for Childhood Tumors of the Central Nervous System PEDIATRICS Partap, S., Maclean, J., Von Behren, J., Reynolds, P., Fisher, P. G. 2011; 128 (3): E652-E657Abstract
The causes of childhood central nervous system (CNS) tumors are largely unknown. Birth characteristics have been examined as possible risk factors for childhood CNS tumors, although the studies have been underpowered and inconclusive. We hypothesized that birth anomalies and a mother's history of previous pregnancy losses, as a proxy for genetic defects, increase the risk for CNS tumors.From the California Cancer Registry, we identified 3733 patients aged 0 to 14 years with CNS tumors, diagnosed from 1988 through 2006 and linked to a California birth certificate. Four controls were matched to each patient. We calculated odds ratios (ORs) for the reported presence of a birth defect and for history of pregnancy losses by using logistic regression, adjusted for race, Hispanic ethnicity, maternal age, birth weight, and birth order.Offspring from mothers who had = 2 fetal losses after 20 weeks' gestation had a threefold risk for CNS tumors (OR: 3.13 [95% confidence interval (CI): 1.32-7.41]) and a 14-fold risk for high-grade glioma (OR: 14.28 [95% CI: 1.56-130.65]). Birth defects increased risk for the CNS cancers medulloblastoma (OR: 1.70 [95% CI: 1.12-2.57]), primitive neuroectodermal tumor (OR: 3.64 [95% CI: 1.54-8.56]), and germ cell tumors (OR: 6.40 [95% CI: 2.09-19.56]).Multiple pregnancy losses after 20 weeks' gestation and birth defects increase the risk of a childhood CNS tumor. Previous pregnancy losses and birth defects may be surrogate markers for gene defects in developmental pathways that lead to CNS tumorigenesis.
View details for DOI 10.1542/peds.2010-3637
View details for Web of Science ID 000295406100022
View details for PubMedID 21824884
View details for PubMedCentralID PMC3164097