New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. You can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
miR-29b Participates in Early Aneurysm Development in Marfan Syndrome
miR-29b Participates in Early Aneurysm Development in Marfan Syndrome CIRCULATION RESEARCH Merk, D. R., Chin, J. T., Dake, B. A., Maegdefessel, L., Miller, M. O., Kimura, N., Tsao, P. S., Iosef, C., Berry, G. J., Mohr, F. W., Spin, J. M., Alvira, C. M., Robbins, R. C., Fischbein, M. P. 2012; 110 (2): 312-?Abstract
Marfan syndrome (MFS) is a systemic connective tissue disorder notable for the development of aortic root aneurysms and the subsequent life-threatening complications of aortic dissection and rupture. Underlying fibrillin-1 gene mutations cause increased transforming growth factor-ß (TGF-ß) signaling. Although TGF-ß blockade prevents aneurysms in MFS mouse models, the mechanisms through which excessive TGF-ß causes aneurysms remain ill-defined.We investigated the role of microRNA-29b (miR-29b) in aneurysm formation in MFS.Using quantitative polymerase chain reaction, we discovered that miR-29b, a microRNA regulating apoptosis and extracellular matrix synthesis/deposition genes, is increased in the ascending aorta of Marfan (Fbn1(C1039G/+)) mice. Increased apoptosis, assessed by increased cleaved caspase-3 and caspase-9, enhanced caspase-3 activity, and decreased levels of the antiapoptotic proteins, Mcl-1 and Bcl-2, were found in the Fbn1(C1039G/+) aorta. Histological evidence of decreased and fragmented elastin was observed exclusively in the Fbn1(C1039G/+) ascending aorta in association with repressed elastin mRNA and increased matrix metalloproteinase-2 expression and activity, both targets of miR-29b. Evidence of decreased activation of nuclear factor ?B, a repressor of miR-29b, and a factor suppressed by TGF-ß, was also observed in Fbn1(C1039G/+) aorta. Furthermore, administration of a nuclear factor ?B inhibitor increased miR-29b levels, whereas TGF-ß blockade or losartan effectively decreased miR-29b levels in Fbn1(C1039G/+) mice. Finally, miR-29b blockade by locked nucleic acid antisense oligonucleotides prevented early aneurysm development, aortic wall apoptosis, and extracellular matrix deficiencies.We identify increased miR-29b expression as key to the pathogenesis of early aneurysm development in MFS by regulating aortic wall apoptosis and extracellular matrix abnormalities.
View details for DOI 10.1161/CIRCRESAHA.111.253740
View details for PubMedID 22116819