New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. You can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
Metabolite kinetics in C6 rat glioma model using magnetic resonance spectroscopic imaging of hyperpolarized [1-13C]pyruvate
Metabolite kinetics in C6 rat glioma model using magnetic resonance spectroscopic imaging of hyperpolarized [1-13C]pyruvate MAGNETIC RESONANCE IN MEDICINE Park, J. M., Josan, S., Jang, T., Merchant, M., Yen, Y., Hurd, R. E., Recht, L., Spielman, D. M., Mayer, D. 2012; 68 (6): 1886-1893Abstract
In addition to an increased lactate-to-pyruvate ratio, altered metabolism of a malignant glioma can be further characterized by its kinetics. Spatially resolved dynamic data of pyruvate and lactate from C6-implanted female Sprague-Dawley rat brain were acquired using a spiral chemical shift imaging sequence after a bolus injection of a hyperpolarized [1-(13)C]pyruvate. Apparent rate constants for the conversion of pyruvate to lactate in three different regions (glioma, normal appearing brain, and vasculature) were estimated based on a two-site exchange model. The apparent conversion rate constant was 0.018 ± 0.004 s(-1) (mean ± standard deviation, n = 6) for glioma, 0.009 ± 0.003 s(-1) for normal brain, and 0.005 ± 0.001 s(-1) for vasculature, whereas the lactate-to-pyruvate ratio, the metabolic marker used to date to identify tumor regions, was 0.36 ± 0.07 (mean ± SD), 0.24 ± 0.07, and 0.12 ± 0.02 for glioma, normal brain, and vasculature, respectively. The data suggest that the apparent conversion rate better differentiate glioma from normal brain (P = 0.001, n = 6) than the lactate-to-pyruvate ratio (P = 0.02).
View details for DOI 10.1002/mrm.24181
View details for Web of Science ID 000311398600022
View details for PubMedID 22334279
View details for PubMedCentralID PMC3376665