Nanoelectroablation therapy for murine basal cell carcinoma BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS Nuccitelli, R., Kevin Tran, K., Athos, B., Kreis, M., Nuccitelli, P., Chang, K. S., Epstein, E. H., Tang, J. Y. 2012; 424 (3): 446-450


When skin tumors are exposed to non-thermal, low energy, nanosecond pulsed electric fields (nsPEF), apoptosis is initiated both in vitro and in vivo. This nanoelectroablation therapy has already been proven effective in treating subdermal murine allograft tumors. We wanted to determine if this therapy would be equally effective in the treatment of autochthonous BCC tumors in Ptch1(+/-)K14-Cre-ER p53 fl/fl mice. These tumors are similar to human BCCs in histology [2,20] and in response to drug therapy [19]. We have treated 27 BCCs across 8 mice with either 300 pulses of 300 ns duration or 2700 pulses of 100 ns duration, all at 30 kV/cm and 5-7 pulses per second. Every nsPEF-treated BCC began to shrink within a day after treatment and their initial mean volume of 36 ± 5 (SEM) mm(3) shrunk by 76 ± 3% over the ensuing two weeks. After four weeks, they were 99.8% ablated if the size of the treatment electrode matched the tumor size. If the tumor was larger than the 4mm wide electrode, multiple treatments were needed for complete ablation. Treated tumors were harvested for histological analysis at various times after treatment and exhibited apoptosis markers. Specifically, pyknosis of nuclei was evident as soon as 2 days after nsPEF treatment, and DNA fragmentation as detected via TUNEL staining was also evident post treatment. Nanoelectroablation is effective in triggering apoptosis and remission of radiation-induced BCCs with a single 6 min-long treatment of 2700 pulses.

View details for DOI 10.1016/j.bbrc.2012.06.129

View details for Web of Science ID 000307618800014

View details for PubMedID 22771794

View details for PubMedCentralID PMC3415467