Ventilatory Power A Novel Index That Enhances Prognostic Assessment of Patients With Heart Failure CIRCULATION-HEART FAILURE Forman, D. E., Guazzi, M., Myers, J., Chase, P., Bensimhon, D., Cahalin, L. P., Peberdy, M. A., Ashley, E., West, E., Daniels, K. M., Arena, R. 2012; 5 (5): 621-626


Minute ventilation/CO(2) production (VE/Vco(2)) slope is an index determined by cardiopulmonary exercise testing, which incorporates pertinent cardiac, pulmonary, and skeletal muscle physiology into a substantive composite assessment. The VE/Vco(2) slope has many applications, including utility as a well-validated prognostic gauge for patients with heart failure (HF). In this study, we combine VE/Vco(2) slope with systolic blood pressure, creating a novel index that we labeled ventilatory power. Ventilatory power links the combined physiology inherent in the VE/Vco(2) slope to peripheral pressure, adding an additional dimension pertinent to HF assessment. Whereas the related concept of circulatory power links peak oxygen consumption with peak systolic blood pressure as a prognostic index, we hypothesized that ventilatory power would provide greater prognostic discrimination than VE/Vco2 slope, peak oxygen consumption, and circulatory power for patients with systolic HF.Patients with systolic HF (left ventricular ejection fraction =35%) underwent symptom-limited cardiopulmonary exercise testing as part of routine management and were followed for up to 4 years for major cardiac events (mortality, left ventricular assist device implantation, and heart transplantation). Eight hundred seventy-five patients with HF (left ventricular ejection fraction, 26±9%; mean age, 55±14) were studied. Cardiopulmonary exercise testing indices peak oxygen consumption, VE/Vco(2) slope, circulatory power, and ventilatory power were all predictive of cardiac events (P<0.001). Multivariate analysis demonstrated that ventilatory power was the strongest indicator of prognosis.Although circulatory power and traditional cardiopulmonary exercise testing parameters can be used to predict prognosis among patients with HF, ventilatory power provides relatively greater prognostic discrimination and may constitute a relatively more useful composite tool.

View details for DOI 10.1161/CIRCHEARTFAILURE.112.968529

View details for Web of Science ID 000313579500014

View details for PubMedID 22899767