The Role of SIRT6 Protein in Aging and Reprogramming of Human Induced Pluripotent Stem Cells. journal of biological chemistry Sharma, A., Diecke, S., Zhang, W. Y., Lan, F., He, C., Mordwinkin, N. M., Chua, K. F., Wu, J. C. 2013; 288 (25): 18439-18447

Abstract

Aging is known to be the single most important risk factor for multiple diseases. Sirtuin-6, or SIRT6, has recently been identified as a critical regulator of transcription, genome stability, telomere integrity, DNA repair, and metabolic homeostasis. A knockout mouse model of SIRT6 has displayed dramatic phenotypes of accelerated aging. In keeping with its role in aging, we demonstrated that human dermal fibroblasts (HDFs) from older subjects were more resistant to reprogramming by classic Yamanaka factors than those from young subjects, but the addition of SIRT6 during reprogramming substantially improved such efficiency in older HDFs. Despite the importance of SIRT6, little is known about the molecular mechanism of its regulation. We show for the first time post-transcriptional regulation of SIRT6 by miR-766 and inverse correlation in the expression of this microRNA in HDFs from different age groups. Our results suggest that SIRT6 regulates miR-766 transcription via a feedback regulatory loop, which has implications for the modulation of SIRT6 expression in reprogramming of aging cells.

View details for DOI 10.1074/jbc.M112.405928

View details for PubMedID 23653361