New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. You can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
MU-OPIATE RECEPTORS MEASURED BY POSITRON EMISSION TOMOGRAPHY ARE INCREASED IN TEMPORAL-LOBE EPILEPSY
MU-OPIATE RECEPTORS MEASURED BY POSITRON EMISSION TOMOGRAPHY ARE INCREASED IN TEMPORAL-LOBE EPILEPSY ANNALS OF NEUROLOGY Frost, J. J., Mayberg, H. S., Fisher, R. S., DOUGLASS, K. H., Dannals, R. F., Links, J. M., Wilson, A. A., Ravert, H. T., Rosenbaum, A. E., Snyder, S. H., WAGNER, H. N. 1988; 23 (3): 231-237Abstract
Neurochemical studies in animal models of epilepsy have demonstrated the importance of multiple neurotransmitters and their receptors in mediating seizures. The role of opiate receptors and endogenous opioid peptides in seizure mechanisms is well developed and is the basis for measuring opiate receptors in patients with epilepsy. Patients with complex partial seizures due to unilateral temporal seizure foci were studied by positron emission tomography using 11C-carfentanil to measure mu-opiate receptors and 18F-fluoro-deoxy-D-glucose to measure glucose utilization. Opiate receptor binding is greater in the temporal neocortex on the side of the electrical focus than on the opposite side. Modeling studies indicate that the increase in binding is due to an increase in affinity or the number of unoccupied receptors. No significant asymmetry of 11C-carfentanil binding was detected in the amygdala or hippocampus. Glucose utilization correlated inversely with 11C-carfentanil binding in the temporal neocortex. Increased opiate receptors in the temporal neocortex may represent a tonic anticonvulsant system that limits the spread of electrical activity from other temporal lobe structures.
View details for Web of Science ID A1988M500100003
View details for PubMedID 2837132