LOSS OF CELL-CYCLE CONTROLS IN APOPTOTIC LYMPHOBLASTS OF THE BURSA OF FABRICIUS MOLECULAR BIOLOGY OF THE CELL Neiman, P. E., BLISH, C., HEYDT, C., Loring, G., THOMAS, S. J. 1994; 5 (7): 763-772

Abstract

Lymphoblasts of the normal embryonic follicles of the chicken bursa of Fabricius undergo rapid apoptosis when exposed to gamma-radiation or when cell-cell contacts are disrupted by mechanical dispersion in short term culture. We have observed previously that overexpression of v-myc sensitizes preneoplastic bursal lymphoblasts to induction of cell death, whereas resistance to induced cell death is acquired during progression to neoplasia. In this study we observed extensive DNA degradation in the large majority of the lymphoblast population within the first hour after dispersion-induced apoptosis. Paradoxically these cells continued to progress into S-phase with the bulk of DNA cleavage and death occurring in S-phase cells (i.e., in cells with more than 2C and less than 4C DNA content). We confirmed the S phase status of apoptotic cells by determining that detection of nuclear cyclin A in individual cells also corresponded with detection of DNA breakage. Levels of cyclin E, cyclin E-dependent H1 histone kinase, and p53 proteins were maintained during dispersion-induced DNA cleavage. gamma-radiation failed either to inhibit cell cycle progression or to raise p53 levels in dispersed bursal lymphoblasts. In intact bursal follicles low doses of gamma-radiation induced p53 whereas higher, apoptosis-inducing doses failed to induce p53 or prevent G1 to S-phase progression. These results suggest that normal DNA damage-induced cell cycle checkpoint controls are lost or overridden when apoptosis is induced in bursal lymphoblasts.

View details for Web of Science ID A1994PC03800005

View details for PubMedID 7812045

View details for PubMedCentralID PMC301094