DYNAMICS OF TUMOR IMAGING WITH GD-DTPA POLYETHYLENE-GLYCOL POLYMERS - DEPENDENCE ON MOLECULAR-WEIGHT JOURNAL OF MAGNETIC RESONANCE IMAGING Desser, T. S., Rubin, D. L., Muller, H. H., Qing, F., KHODOR, S., Zanazzi, G., Young, S. W., Ladd, D. L., WELLONS, J. A., Kellar, K. E., Toner, J. L., Snow, R. A. 1994; 4 (3): 467-472

Abstract

Macromolecular contrast media offer potential advantages over freely diffusible agents in magnetic resonance (MR) imaging outside the central nervous system. To identify an optimum molecular weight for macromolecular contrast media, the authors studied a novel macromolecular contrast agent, gadolinium diethylenetriaminepentaacetic acid polyethylene glycol (DTPA-PEG), synthesized in seven polymer (average) molecular weights ranging from 10 to 83 kd. Twenty-eight rabbits bearing V2 carcinoma in thighs underwent T1-weighted spin-echo imaging before injection and 5-60 minutes and 24 hours after injection of the Gd-DTPA-PEG polymers or Gd-DTPA at a gadolinium dose of 0.1 mmol/kg. Tumor region-of-interest measurements were obtained at each time point to determine contrast enhancement dynamics. Blood-pool enhancement dynamics were observed for the Gd-DTPA-PEG polymers larger than 20 kd. Polymers smaller than 20 kd displayed dynamics similar to those of the freely diffusible agent Gd-DTPA. Above the 20 kd threshold, tumor enhancement was more rapid for smaller polymers. The authors conclude that the 21.9-kd Gd-DTPA-PEG polymer is best suited for clinical MR imaging.

View details for Web of Science ID A1994NP29200033

View details for PubMedID 8061449