COMPENSATING FOR CHANGES IN MUSCLE LENGTH IN TOTAL HIP-ARTHROPLASTY - EFFECTS ON THE MOMENT GENERATING CAPACITY OF THE MUSCLES CLINICAL ORTHOPAEDICS AND RELATED RESEARCH Vasavada, A. N., Delp, S. L., Maloney, W. J., Schurman, D. J., Zajac, F. E. 1994: 121-133

Abstract

Alterations in the location of the hip center may change the lengths and moment arms of the muscles, and thereby affect their capacity to generate force and moment about the hip. This study demonstrates some of the differences between compensating and not compensating for changes in muscle length that arise from displacement of the hip center. A computer model was developed to estimate the maximum isometric moment generating capacity of the hip muscles under two conditions. In the compensated condition, the hip center was displaced, but the muscles were restored to their original lengths and orientations by altering proximal femoral geometry. In the uncompensated condition, femoral geometry remained constant; thus, muscle lengths and orientations changed with displacement of the hip center. The computer simulations showed large differences between the two conditions. For example, a 2-cm superior displacement of the hip center decreased the moment generating capacity of the hip abductors 18% with compensation and 49% without compensation. Similarly, a 1-cm medial displacement of the hip center increased the moment generating capacity of the abductors 17% with compensation, but decreased it 4% without compensation. In contrast, a 1-cm inferior displacement decreased the moment generating capacity of flexors 6% with compensation, but increased it 12% without compensation. The results presented here demonstrate that compensating for changes in muscle length can be important in terms of preserving the moment generating capacity of the muscles when the hip center is displaced superiorly and medially, but not when the hip center is displaced in the inferior direction.

View details for Web of Science ID A1994NL07400020

View details for PubMedID 8168289