Identification and characterization of the CLK1 gene product, a novel CaM kinase-like protein kinase from the yeast Saccharomyces cerevisiae JOURNAL OF BIOLOGICAL CHEMISTRY Melcher, M. L., Thorner, J. 1996; 271 (47): 29958-29968

Abstract

The CLK1 gene of Saccharomyces cerevisiae encodes a 610-residue protein kinase that resembles known type II Ca2+/calmodulin-dependent protein kinases (CaM kinases), including the CMK1 and CMK2 gene products from the same yeast. The Clk1 kinase domain is preceded by a 162-residue N-terminal extension, followed by a 132-residue C-terminal extension (which contains a basic segment resembling known calmodulin-binding sites) and is as similar to mammalian CaM kinase (38% identity to rat CaM kinase alpha) as it is to yeast CaM kinase (37% identity to Cmk2). However, Clk1 shares 52% identity with Rck1, another putative protein kinase encoded in the S. cerevisiae genome. Clk1 tagged with a c-myc epitope (expressed in yeast) and a GST-Clk1 fusion (expressed in bacteria) underwent autophosphorylation and phosphorylated an exogenous substrate (yeast protein synthesis elongation factor 2), primarily on Ser. Neither Clk1 activity was stimulated by purified yeast calmodulin (CMD1 gene product), with or without Ca2+; no association of Clk1 with Cmd1 was detectable by other methods. C-terminally truncated Clk1(Delta487-610) was growth-inhibitory when overexpressed, whereas catalytically inactive Clk1(K201R Delta487-610) was not, suggesting that the C terminus is a negative regulatory domain. Using immunofluorescence, Clk1 was localized to the cytosol and excluded from the nucleus. A clk1Delta mutant, a clk1Delta rck1Delta double mutant, a clk1Delta cmk1Delta cmk2Delta triple mutant, and a clk1Delta rck1Delta cmk1Delta cmk2Delta quadruple mutant were all viable and manifested no other overt growth phenotype.

View details for Web of Science ID A1996VU52500069

View details for PubMedID 8939941