Loosening and osteolysis of cemented joint arthroplasties - A biologic spectrum CLINICAL ORTHOPAEDICS AND RELATED RESEARCH Goodman, S. B., Huie, P., Song, Y., Lee, K., Doshi, A., Rushdieh, B., Woolson, S., Maloney, W., Schurman, D., Sibley, R. 1997: 149-163


The purpose of this study was to characterize the cell types (using immunohistochemistry) and cytokine expression (using in situ hybridization) of tissues surrounding well fixed and loose cemented prostheses undergoing revision. Clinical and radiographic data were gathered prospectively for a series of cemented total joint replacements undergoing revision. Three groups were identified: (1) loose implants with osteolysis (10 specimens), (2) loose implants without osteolysis (11 specimens), and (3) well fixed implants (7 specimens). At surgery, a specimen was harvested from the bone cement interface. Immunohistochemical staining was performed using monoclonal antibodies to identify macrophages and lymphocyte subgroups. Human antisense probes were selected to identify the mRNA for specific cytokines using in situ hybridization. The percentage of positively staining cells was determined for each antibody or probe using a grid counting technique. Tissues from loose cemented prostheses with osteolysis contained significantly greater numbers of macrophages and T lymphocytes compared with tissues from loose and well fixed cemented prostheses without osteolysis. The number of interleukin-1 and interleukin-6 positive cells was highest in specimens with osteolysis and lowest in specimens from well fixed prostheses. These cytokines modulate the growth and differentiation of cells in the immune system and the monocyte and macrophage system and mediate the remodeling of bone and mesenchymal tissues. Specific cell populations and cytokine profiles appear to be involved in periprosthetic osteolysis; this information may be useful in planning strategies for prevention and treatment.

View details for PubMedID 9137186