New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. You can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
Hypoxia increases human keratinocyte motility on connective tissue
Hypoxia increases human keratinocyte motility on connective tissue 56th Annual Meeting of the Society-for-Investigative-Dermatology O'Toole, E. A., Marinkovich, M. P., Peavey, C. L., Amieva, M. R., FURTHMAYR, H., Mustoe, T. A., Woodley, D. T. AMER SOC CLINICAL INVESTIGATION INC. 1997: 2881–91Abstract
Re-epithelialization of skin wounds depends upon the migration of keratinocytes from the cut margins of the wound and is enhanced when human keratinocytes are covered with occlusive dressings that induce hypoxia. In this study, two independent migration assays were used to compare cellular motility on connective tissue components under normoxic or hypoxic conditions. Human keratinocytes apposed to collagens or fibronectin exhibited increased motility when subjected to hypoxic (0.2 or 2% oxygen) conditions compared with normoxic (9 or 20% oxygen) conditions. When compared with normoxic cells, hypoxic keratinocytes exhibited increased expression and redistribution of the lamellipodia-associated proteins (ezrin, radixin, and moesin). Furthermore, hypoxic keratinocytes demonstrated decreased secretion of laminin-5, a laminin isoform known to inhibit keratinocyte motility. Hypoxia did not alter the number of integrin receptors on the cell surface, but did induce enhanced secretion of the 92-kD type IV collagenase. These data demonstrate that hypoxia promotes human keratinocyte motility on connective tissue. Hypoxia-driven motility is associated with increased expression of lamellipodia proteins, increased expression of collagenase and decreased expression of laminin-5, the locomotion brake for keratinocytes.
View details for Web of Science ID 000071007300031
View details for PubMedID 9389755
View details for PubMedCentralID PMC508495