New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. You can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
LAR Tyrosine Phosphatase Receptor: A Developmental Isoform Is Present in Neurites and Growth Cones and Its Expression Is Regional- and Cell-Specific.
LAR Tyrosine Phosphatase Receptor: A Developmental Isoform Is Present in Neurites and Growth Cones and Its Expression Is Regional- and Cell-Specific. Molecular and cellular neurosciences Zhang, Honkaniemi, Yang, Yeo, Longo 1998; 10 (5/6): 271-286Abstract
Transgenic mice and Drosophila mutant studies demonstrate that the leukocyte common antigen-related (LAR) protein tyrosine phosphatase (PTPase) receptor is required for formation of neural networks. We assessed the hypothesis that alternative splicing of the LAR extracellular region contributes to this function by establishing temporospatial expression patterns of LAR isoforms containing an alternatively spliced extracellular nine amino acid segment (LAR alternatively spliced element-c; LASE-c). LASE-c was present in multiple alternatively spliced and truncated LAR transcripts. In contrast to LAR isoforms without LASE-c, levels of LAR transcripts and protein isoforms containing LASE-c were primarily present during development, suggesting a mechanism for developmental regulation of LAR function. In situ analysis demonstrated increasingly region- and cell-specific expression of LASE-c during maturation. Immunostaining revealed LASE-c-containing LAR protein along neurites and in growth cones. The discovery of highly regulated, temporospatial extracellular domain alternative splicing of LAR-type PTPase receptors points to a novel mechanism by which these receptors might influence network formation. Copyright 1998 Academic Press.
View details for PubMedID 9618218