Skip to main content
Slow myosins in muscle development. Results and problems in cell differentiation Stockdale, F. E., Nikovits, W., Espinoza, N. R. 2002; 38: 199-214

Abstract

Myogenesis has been a system central to investigations on mechanisms of diversification within groups of differentiating cells. Diversity among cell types has been well described in striated muscle tissue at the protein and enzymatic-function levels for decades, but it is only in recent years that some understanding of the molecular mechanisms responsible for this diversity has begun to emerge. Study of the expression of the slow isoforms of the myosin heavy chain has contributed to our understanding of how cell diversity arises within skeletal and cardiac muscle. Slow MyHc isoforms are developmentally responsive to a number of cues provided by the nervous systems, the endocrine system and, later in development, to functional demands on these developing tissues. Perhaps most informative have been studies on the mechanism for regulation of slow MyHc expression in mammals and birds where studies on the calcineurin-NF-AT pathways and nuclear hormone action have been shown to control MyHC gene expression in skeletal muscle and in the developing heart. The mechanisms involved in cell diversification in myogenesis are undoubtedly more varied and complex than those currently offered to explain cell diversification, but these recent studies have broadened our understanding of the interplay between the nervous system, the endocrine system and cell lineages in controlling cell diversification. Greater focus on the first fibers and cardiomyocytes to form in the embryo are likely to bring additional insights into the mechanism crucial for establishing the patterns of diversity required for successful formation of embryonic tissues.

View details for PubMedID 12132396