Effect of osteogenic protein 1/collagen composite combined with impacted allograft around hydroxyapatite-coated titanium alloy implants is moderate JOURNAL OF BIOMEDICAL MATERIALS RESEARCH Lind, M., Overgaard, S., Jensen, T. B., Song, Y., Goodman, S. B., Bunger, C., Soballe, K. 2001; 55 (1): 89-95

Abstract

This study evaluated the effects of osteogenic protein 1/collagen composite (OP-1/col) mixed with impacted allograft around hydroxyapatite (HA)-coated titanium alloy implants in a canine model. The aim of the study was to test different doses of OP-1 growth factor in a collagen composite for stimulatory effect on allograft incorporation around an implant. Unloaded implants were inserted in each proximal humerus of 16 skeletally mature dogs. The cylindrical implants (4 x 9 mm) coated with HA were initially surrounded by a 3-mm gap into which allograft mixed with OP-1/col was impacted. Two different doses of OP-1 were investigated. In eight animals 325 mg OP-1 protein and 130 mg bovine collagen type I as carrier were mixed with the allograft chips. This composite is identical to the clinically used OP-1 device called Novus. In another eight animals a lower dose of 65 mg OP-1 protein and 130 mg bovine collagen type I was used. Control implants placed in the contralateral humerus were surrounded by allograft mixed with collagen carrier only. The dogs were euthanized at 6 weeks. Implant fixation was determined by push-out testing. Bone ingrowth and bone formation were evaluated by quantitative histomorphometry on serial sections of the bone-implant interface. Impacted allograft together with low-dose OP-1 enhanced bone volume in a zone adjacent to HA-coated titanium alloy implants. The high dose had no effect on bone formation. Mechanical fixation, bone ingrowth, and bone volume in the gap near the original trabecular bone were unaffected by both low and high OP-1/col composite. In this model and observation period, the low dose of OP-1/col composite mixed with impacted allograft has a moderate effect on bone healing around HA-coated implants and no effect on implant fixation.

View details for Web of Science ID 000166753400012

View details for PubMedID 11426402