Proinflammatory mediator release in response to particle challenge: Studies using the bone harvest chamber JOURNAL OF BIOMEDICAL MATERIALS RESEARCH Trindade, M. C., Song, Y., Aspenberg, P., Smith, R. L., Goodman, S. B. 1999; 48 (4): 434-439


This study reports on the effects of phagocytosable particles on proinflammatory mediator release in an animal model. Bone harvest chambers (BHCs) were implanted bilaterally into mature rabbits; phagocytosable ultrahigh molecular weight polyethylene (UHMWPE) and polystyrene (PS) particles, and the carrier sodium hyaluronate (HE) were tested for their ability to stimulate proinflammatory mediator release. Tissues were harvested after 3, 4, or 6 weeks. Retrieved tissues were placed into culture medium. The release of the proinflammatory mediators interleukin-6 (IL-6), interleukin-1beta (IL-1beta), and tumor necrosis factor alpha (TNF-alpha) into the culture medium was assessed using bioassays. DNA content and dry weights were also measured. The maximal biological response to the PE particles with respect to TNF-alpha and IL-1beta was observed at three weeks with 11- and fivefold stimulations over controls, respectively. The maximal response to PE particles with respect to IL-6 was observed at 4 weeks with a twofold stimulation over controls. Similar patterns were seen with PS particles; however, PE particles stimulated higher cytokine release. PE particles stimulated the expression of IL-1beta, IL-6, and TNF-alpha in the BHC model. Cell culture and human retrieval studies also implicate these proinflammatory mediators in loosening and osteolysis of total joint replacements. Thus, the BHC is a useful in vivo model to document the effects of particles on the evolution of biological responses to particulate debris.

View details for PubMedID 10421684