New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. You can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
Frameshift Mutagenesis and Microsatellite Instability Induced by Human Alkyladenine DNA Glycosylase
Frameshift Mutagenesis and Microsatellite Instability Induced by Human Alkyladenine DNA Glycosylase MOLECULAR CELL Klapacz, J., Lingaraju, G. M., Guo, H. H., Shah, D., Moar-Shoshani, A., Loeb, L. A., Samson, L. D. 2010; 37 (6): 843-853Abstract
Human alkyladenine DNA glycosylase (hAAG) excises alkylated purines, hypoxanthine, and etheno bases from DNA to form abasic (AP) sites. Surprisingly, elevated expression of hAAG increases spontaneous frameshift mutagenesis. By random mutagenesis of eight active site residues, we isolated hAAG-Y127I/H136L double mutant that induces even higher rates of frameshift mutation than does the wild-type hAAG; the Y127I mutation accounts for the majority of the hAAG-Y127I/H136L-induced mutator phenotype. The hAAG-Y127I/H136L and hAAG-Y127I mutants increased the rate of spontaneous frameshifts by up to 120-fold in S. cerevisiae and also induced high rates of microsatellite instability (MSI) in human cells. hAAG and its mutants bind DNA containing one and two base-pair loops with significant affinity, thus shielding them from mismatch repair; the strength of such binding correlates with their ability to induce the mutator phenotype. This study provides important insights into the mechanism of hAAG-induced genomic instability.
View details for DOI 10.1016/j.molcel.2010.01.038
View details for Web of Science ID 000276135100011
View details for PubMedID 20347426
View details for PubMedCentralID PMC2894629