Mast cells suppress murine GVHD in a mechanism independent of CD4+CD25+ regulatory T cells. Blood Leveson-Gower, D. B., Sega, E. I., Kalesnikoff, J., Florek, M., Pan, Y., Pierini, A., Galli, S. J., Negrin, R. S. 2013; 122 (22): 3659-3665

Abstract

To investigate the role of mast cells in hematopoietic cell transplantation, we assessed graft-versus-host disease (GVHD) in C57BL/6-Kit(W-sh/W-sh) recipients, which virtually lack mast cells, compared with C57BL/6 WT recipients. GVHD was severely exacerbated in C57BL/6-Kit(W-sh/W-sh) mice (median survival time = 13 vs 60 days in wild-type [WT] mice; P < .0001). The increased mortality risk in C57BL/6-Kit(W-sh/W-sh) hosts correlated with increased T-cell numbers in lymph nodes, liver, and gastrointestinal tract sites, as indicated by bioluminescence imaging (P < .001). We did not detect any deficit in the number or function of CD4(+)CD25(+) regulatory T cells (Tregs) in C57BL/6-Kit(W-sh/W-sh) mice. Furthermore, Tregs were equally effective at reducing GVHD in C57BL/6-Kit(W-sh/W-sh) recipients compared with WT recipients containing mast cells. Furthermore, we found that survival of C57BL/6-Kit(W-sh/W-sh) mice during GVHD was significantly improved if the mice were engrafted with bone marrow-derived cultured mast cells from WT C57BL/6 mice but not from interleukin (IL)-10-deficient C57BL/6 mice. These data indicate that the presence of mast cells can significantly reduce GVHD independently of Tregs, by decreasing conventional T-cell proliferation in a mechanism involving IL-10. These experiments support the conclusion that mast cells can mediate a novel immunoregulatory role during hematopoietic cell transplantation.

View details for DOI 10.1182/blood-2013-08-519157

View details for PubMedID 24030387

View details for PubMedCentralID PMC3837515