Assessment of elastin deficit in a marfan mouse aneurysm model using an elastin-specific magnetic resonance imaging contrast agent. Circulation. Cardiovascular imaging Okamura, H., Pisani, L. J., Dalal, A. R., Emrich, F., Dake, B. A., Arakawa, M., Onthank, D. C., Cesati, R. R., Robinson, S. P., Milanesi, M., Kotek, G., Smit, H., Connolly, A. J., Adachi, H., McConnell, M. V., Fischbein, M. P. 2014; 7 (4): 690-696

Abstract

-Ascending aortic dissection and rupture remain a life-threatening complication in patients with Marfan syndrome (MFS). The extracellular matrix provides strength and elastic recoil to the aortic wall, thereby preventing radial expansion. We have previously shown that ascending aortic aneurysm formation in Marfan mice (Fbn1(C1039G/+)) is associated with decreased aortic wall elastogenesis and increased elastin breakdown. In this study, we test the feasibility of quantifying aortic wall elastin content using magnetic resonance imaging (MRI) with a gadolinium-based elastin-specific contrast agent (ESMA) in Fbn1(C1039G/+) mice.-Ascending aorta elastin content was measured in 32-week-old Fbn1(C1039G/+) mice and wild-type (WT) (n=9 and n=10, respectively) using 7T MRI with a T1-mapping sequence. Significantly lower enhancement (i.e., lower R1 values, where R1=1/T1) was detected post-ESMA in Fbn1(C1039G/+) compared to WT ascending aortas (1.15±0.07 vs. 1.36±0.05, p<0.05). Post-ESMA R1 values correlated with ascending aortic wall gadolinium content directly measured by inductively coupled mass spectroscopy (p=0.006).-Herein, we demonstrate that MRI with ESMA accurately measures elastin bound gadolinium within the aortic wall and detects a decrease in aortic wall elastin in Marfan mice compared to WT controls. This approach has translational potential for non-invasively assessing aneurysm tissue changes and risk, as well as monitoring elastin content in response to therapeutic interventions.

View details for DOI 10.1161/CIRCIMAGING.114.001658

View details for PubMedID 24814820