New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. You can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
Presynaptic homeostasis at CNS nerve terminals compensates for lack of a key Ca2+ entry pathway
Presynaptic homeostasis at CNS nerve terminals compensates for lack of a key Ca2+ entry pathway PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Piedras-Renteria, E. S., Pyle, J. L., Diehn, M., Glickfeld, L. L., Harata, N. C., Cao, Y. Q., Kavalali, E. T., Brown, P. O., Tsien, R. W. 2004; 101 (10): 3609-3614Abstract
At central synapses, P/Q-type Ca(2+) channels normally provide a critical Ca(2+) entry pathway for neurotransmission. Nevertheless, we found that nerve terminals lacking alpha(1A) (Ca(V)2.1), the pore-forming subunit of P/Q-type channels, displayed a remarkable preservation of synaptic function. Two consistent physiological changes reflective of synaptic homeostasis were observed in cultured hippocampal neurons derived from alpha(1A) (-/-) mice. First, the presynaptic response to an ionophore-mediated Ca(2+) elevation was 50% greater, indicating an enhanced Ca(2+) sensitivity of the release machinery. Second, basal miniature excitatory postsynaptic current frequency in alpha(1A) (-/-) neurons was increased 2-fold compared with WT neurons and occluded the normal response of presynaptic terminals to cAMP elevation, suggesting that the compensatory mechanism in alpha(1A) (-/-) synapses and the modulation of presynaptic function by PKA might share a final common pathway. We used cDNA microarray analysis to identify molecular changes underlying homeostatic regulation in the alpha(1A) (-/-) hippocampus. The 40,000 entries in our custom-made array included likely targets of presynaptic homeostasis, along with many other transcripts, allowing a wide-ranging examination of gene expression. The developmental pattern of changes in transcript levels relative to WT was striking; mRNAs at 5 and 11 days postnatal showed little deviation, but clear differences emerged by 22 days. Many of the transcripts that differed significantly in abundance corresponded to known genes that could be incorporated within a logical pattern consistent with the modulation of presynaptic function. Changes in endocytotic proteins, signal transduction kinases, and candidates for Ca(2+)-sensing molecules were consistent with implications of the direct physiological experiments.
View details for DOI 10.1073/pnas.0308188100
View details for Web of Science ID 000220163800052
View details for PubMedID 14990796
View details for PubMedCentralID PMC373510