Electrical Integration of Human Embryonic Stem Cell-Derived Cardiomyocytes in a Guinea Pig Chronic Infarct Model JOURNAL OF CARDIOVASCULAR PHARMACOLOGY AND THERAPEUTICS Shiba, Y., Filice, D., Fernandes, S., Minami, E., Dupras, S. K., Van Biber, B., Trinh, P., Hirota, Y., Gold, J. D., Viswanathan, M., Laflamme, M. A. 2014; 19 (4): 368-381

Abstract

Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) were recently shown to be capable of electromechanical integration following direct injection into intact or recently injured guinea pig hearts, and hESC-CM transplantation in recently injured hearts correlated with improvements in contractile function and a reduction in the incidence of arrhythmias. The present study was aimed at determining the ability of hESC-CMs to integrate and modulate electrical stability following transplantation in a chronic model of cardiac injury.At 28 days following cardiac cryoinjury, guinea pigs underwent intracardiac injection of hESC-CMs, noncardiac hESC derivatives (non-CMs), or vehicle. Histology confirmed partial remuscularization of the infarct zone in hESC-CM recipients while non-CM recipients showed heterogeneous xenografts. The 3 experimental groups showed no significant difference in the left ventricular dimensions or fractional shortening by echocardiography or in the incidence of spontaneous arrhythmias by telemetric monitoring. Although recipients of hESC-CMs and vehicle showed a similar incidence of arrhythmias induced by programmed electrical stimulation at 4 weeks posttransplantation, non-CM recipients proved to be highly inducible, with a ~3-fold greater incidence of induced arrhythmias. In parallel studies, we investigated the ability of hESC-CMs to couple with host myocardium in chronically injured hearts by the intravital imaging of hESC-CM grafts that stably expressed a fluorescent reporter of graft activation, the genetically encoded calcium sensor GCaMP3. In this work, we found that only ~38% (5 of 13) of recipients of GCaMP3+ hESC-CMs showed fluorescent transients that were coupled to the host electrocardiogram.Human embryonic stem cell-derived cardiomyocytes engraft in chronically injured hearts without increasing the incidence of arrhythmias, but their electromechanical integration is more limited than previously reported following their transplantation in a subacute injury model. Moreover, non-CM grafts may promote arrhythmias under certain conditions, a finding that underscores the need for input preparations of high cardiac purity.

View details for DOI 10.1177/1074248413520344

View details for Web of Science ID 000338394200006

View details for PubMedCentralID PMC4127378