New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. You can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
Neurosurgery concepts: Key perspectives on dendritic cell vaccines, metastatic tumor treatment, and radiosurgery.
Neurosurgery concepts: Key perspectives on dendritic cell vaccines, metastatic tumor treatment, and radiosurgery. Surgical neurology international Li, G. n., Sherman, J. H., Cho, J. M., Lim, M. n., Khalessi, A. A., Colen, C. B., Kim, C. Y., Wang, V. Y., Zada, G. n., Smith, Z. A., Yang, I. n. 2015; 6: 6Abstract
This is a laboratory study to investigate the effect of adding brain-derived-neurotrophic factor (BDNF) in a poly (N-isopropylacrylamide-g-poly (ethylene glycol) scaffold and its effect on spinal cord injury in a rat model.This is a laboratory investigation of a spinal cord injury in a rat model. A dorsolateral funiculotomy was used to disrupt the dorsolateral funiculus and rubrospinal tract. Animals were then injected with either the scaffold polymer or scaffold polymer with BDNF. Postoperatively, motor functions were assessed with single pellet reach to grasp task, stair case reaching task and cylinder task. Histological study was also performed to look at extent of glial scar and axonal growth.Animals received BDNF containing polymer had an increased recovery rate of fine motor function of forelimb, as assessed by stair case reaching task and single pellet reach to grasp task compared with control animals that received the polymer only. There is no significant difference in the glial scar formation. BDNF treated animals also had increased axon growth including increase in the number and length of the rubrospinal tract axons.BDNF delivered via a scaffold polymer results in increased recovery rate in forelimb motor function in an experimental model of spinal cord injury, possibly through a promotion of growth of axons of the rubrospinal tract.
View details for DOI 10.4103/2152-7806.149389
View details for PubMedID 25657859