New to MyHealth?
Manage Your Care From Anywhere.
Access your health information from any device with MyHealth. You can message your clinic, view lab results, schedule an appointment, and pay your bill.
ALREADY HAVE AN ACCESS CODE?
DON'T HAVE AN ACCESS CODE?
NEED MORE DETAILS?
MyHealth for Mobile
CCR2 inhibition sequesters multiple subsets of leukocytes in the bone marrow.
CCR2 inhibition sequesters multiple subsets of leukocytes in the bone marrow. Scientific reports Fujimura, N., Xu, B., Dalman, J., Deng, H., Aoyama, K., Dalman, R. L. 2015; 5: 11664-?Abstract
Chemokine receptor CCR2 mediates monocyte mobilization from the bone marrow (BM) and subsequent migration into target tissues. The degree to which CCR2 is differentially expressed in leukocyte subsets, and the contribution of CCR2 to these leukocyte mobilization from the BM are poorly understood. Using red fluorescence protein CCR2 reporter mice, we found heterogeneity in CCR2 expression among leukocyte subsets in varying tissues. CCR2 was highly expressed by inflammatory monocytes, dendritic cells, plasmacytoid dendritic cells and NK cells in all tissues. Unexpectedly, more than 60% of neutrophils expressed CCR2, albeit at low levels. CCR2 expression in T cells, B cells and NK T cells was greatest in the BM compared to other tissues. Genetic CCR2 deficiency markedly sequestered all leukocyte subsets in the BM, with reciprocal reduction noted in the peripheral blood and spleen. CCR2 inhibition via treatment with CCR2 signaling inhibitor propagermanium produced similar effects. Propagermanium also mitigated lipopolysaccharide-induced BM leukocyte egress. Consistent with its functional significance, CCR2 antibody staining revealed surface CCR2 expression within a subset of BM neutrophils. These results demonstrate the central role CCR2 plays in mediating leukocyte mobilization from the BM, and suggest a role for CCR2 inhibition in managing monocytes/macrophages-mediated chronic inflammatory conditions.
View details for DOI 10.1038/srep11664
View details for PubMedID 26206182