Daytime spikes in dopaminergic activity drive rapid mood-cycling in mice MOLECULAR PSYCHIATRY Sidor, M. M., Spencer, S. M., Dzirasa, K., PAREKH, P. K., Tye, K. M., WARDEN, M. R., Arey, R. N., Enwright, J. F., Jacobsen, J. P., Kumar, S., Remillard, E. M., Caron, M. G., Deisseroth, K., McClung, C. A. 2015; 20 (11): 1406-1419

Abstract

Disruptions in circadian rhythms and dopaminergic activity are involved in the pathophysiology of bipolar disorder, though their interaction remains unclear. Moreover, a lack of animal models that display spontaneous cycling between mood states has hindered our mechanistic understanding of mood switching. Here, we find that mice with a mutation in the circadian Clock gene (Clock?19) exhibit rapid mood-cycling, with a profound manic-like phenotype emerging during the day following a period of euthymia at night. Mood-cycling coincides with abnormal daytime spikes in ventral tegmental area (VTA) dopaminergic activity, tyrosine hydroxylase (TH) levels and dopamine synthesis. To determine the significance of daytime increases in VTA dopamine activity to manic behaviors, we developed a novel optogenetic stimulation paradigm that produces a sustained increase in dopamine neuronal activity and find that this induces a manic-like behavioral state. Time-dependent dampening of TH activity during the day reverses manic-related behaviors in Clock?19 mice. Finally, we show that CLOCK acts as a negative regulator of TH transcription, revealing a novel molecular mechanism underlying cyclic changes in mood-related behavior. Taken together, these studies have identified a mechanistic connection between circadian gene disruption and the precipitation of manic episodes in bipolar disorder.

View details for DOI 10.1038/mp.2014.167

View details for Web of Science ID 000363465300015

View details for PubMedID 25560763

View details for PubMedCentralID PMC4492925