The precise timing of tachycardia entrainment is determined by the postpacing interval, the tachycardia cycle length, and the pacing rate: Theoretical insights and practical applications
The precise timing of tachycardia entrainment is determined by the postpacing interval, the tachycardia cycle length, and the pacing rate: Theoretical insights and practical applications HEART RHYTHM 2016; 13 (3): 695-703Abstract
Previous observations have reported that the number of pacing stimuli required to entrain a tachycardia varies on the basis of arrhythmia type and location, but a quantitative formulation of the number needed to entrain (NNE) that unifies these observations has not been characterized.We sought to investigate the relationship between the number of pacing stimulations, the tachycardia cycle length (TCL), the overdrive pacing cycle length (PCL), and the postpacing interval (PPI) to accurately estimate the timing of tachycardia entrainment.First, we detailed a mathematical derivation unifying electrophysiological parameters with empirical confirmation in 2 patients undergoing catheter ablation of typical atrial flutter. Second, we validated our formula in 44 patients who underwent various catheter ablation procedures. For accuracy, we corrected for rate-related changes in conduction velocity.We derived the equations NNE = |(PPI - TCL)/(TCL - PCL)| + 1 and Tachycardia advancement = (NNE - 1) × (TCL - PCL) - (PPI - TCL), which state that the NNE and the amount of tachycardia advancement on the first resetting stimulation are determined using regularly measured intracardiac parameters. In the retrospective cohort, the observed PPI - TCL highly correlated with the predicted PPI - TCL (mean difference 5.8 ms; r = 0.97; P < .001), calculated as PPI - TCL = (NNE - 1) × (TCL - PCL) - tachycardia advancement.The number of pacing stimulations required to entrain a reentrant tachycardia is predictable at any PCL after correcting for cycle length-dependent changes in conduction velocity. This relationship unifies established empirically derived diagnostic and mapping criteria for supraventricular tachycardia and ventricular tachycardia. This relationship may help elucidate when antitachycardia pacing episodes are ineffective or proarrhythmic and could potentially serve as a theoretical basis to customize antitachycardia pacing settings for improved safety and effectiveness.
View details for DOI 10.1016/j.hrthm.2015.11.032
View details for Web of Science ID 000372367800012
View details for PubMedCentralID PMC4770895