Pilot Comparison of Ga-68-RM2 PET and Ga-68-PSMA-11 PET in Patients with Biochemically Recurrent Prostate Cancer JOURNAL OF NUCLEAR MEDICINE Minamimoto, R., Hancock, S., Schneider, B., Chin, F. T., Jamali, M., Loening, A., Vasanawala, S., Gambhir, S. S., Iagaru, A. 2016; 57 (4): 557-562

Abstract

Glu-NH-CO-NH-Lys-(Ahx)-[(68)Ga(HBED-CC)] ((68)Ga-PSMA-11) is a PET tracer that can detect prostate cancer relapses and metastases by binding to the extracellular domain of PSMA.(68)Ga-labeled DOTA-4-amino-1-carboxymethyl-piperidine-d-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 ((68)Ga-RM2) is a synthetic bombesin receptor antagonist that targets gastrin-releasing peptide receptors. We present pilot data on the biodistribution of these PET tracers in a small cohort of patients with biochemically recurrent prostate cancer.Seven men (mean age ± SD, 74.3 ± 5.9 y) with biochemically recurrent prostate cancer underwent both(68)Ga-PSMA-11 PET/CT and(68)Ga-RM2 PET/MRI scans. SUVmaxand SUVmeanwere recorded for normal tissues and areas of uptake outside the expected physiologic biodistribution.All patients had a rising level of prostate-specific antigen (mean ± SD, 13.5 ± 11.5) and noncontributory results on conventional imaging.(68)Ga-PSMA-11 had the highest physiologic uptake in the salivary glands and small bowel, with hepatobiliary and renal clearance noted, whereas(68)Ga-RM2 had the highest physiologic uptake in the pancreas, with renal clearance noted. Uptake outside the expected physiologic biodistribution did not significantly differ between(68)Ga-PSMA-11 and(68)Ga-RM2; however,(68)Ga-PSMA-11 localized in a lymph node and seminal vesicle in a patient with no abnormal(68)Ga-RM2 uptake. Abdominal periaortic lymph nodes were more easily visualized by(68)Ga-RM2 in two patients because of lack of interference by radioactivity in the small intestine.(68)Ga-PSMA-11 and(68)Ga-RM2 had distinct biodistributions in this small cohort of patients with biochemically recurrent prostate cancer. Additional work is needed to understand the expression of PSMA and gastrin-releasing peptide receptors in different types of prostate cancer.

View details for DOI 10.2967/jnumed.115.168393

View details for PubMedID 26659347