Pathogen receptor discovery with a microfluidic human membrane protein array PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Glick, Y., Ben-Ari, Y., Drayman, N., Pellach, M., Neveu, G., Boonyaratanakornkit, J., Avrahami, D., Einav, S., Oppenheim, A., Gerber, D. 2016; 113 (16): 4344-4349

Abstract

The discovery of how a pathogen invades a cell requires one to determine which host cell receptors are exploited. This determination is a challenging problem because the receptor is invariably a membrane protein, which represents an Achilles heel in proteomics. We have developed a universal platform for high-throughput expression and interaction studies of membrane proteins by creating a microfluidic-based comprehensive human membrane protein array (MPA). The MPA is, to our knowledge, the first of its kind and offers a powerful alternative to conventional proteomics by enabling the simultaneous study of 2,100 membrane proteins. We characterized direct interactions of a whole nonenveloped virus (simian virus 40), as well as those of the hepatitis delta enveloped virus large form antigen, with candidate host receptors expressed on the MPA. Selected newly discovered membrane protein-pathogen interactions were validated by conventional methods, demonstrating that the MPA is an important tool for cellular receptor discovery and for understanding pathogen tropism.

View details for DOI 10.1073/pnas.1518698113

View details for Web of Science ID 000374393800043

View details for PubMedID 27044079

View details for PubMedCentralID PMC4843447