PRECLINICAL EVALUATION AND INTRAOPERATIVE HUMAN RETINAL IMAGING WITH A HIGH-RESOLUTION MICROSCOPE-INTEGRATED SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY DEVICE RETINA-THE JOURNAL OF RETINAL AND VITREOUS DISEASES Hahn, P., Migacz, J., O'Connell, R., Day, S., Lee, A., Lin, P., Vann, R., Kuo, A., Fekrat, S., Mruthyunjaya, P., Postel, E. A., Izatt, J. A., Toth, C. A. 2013; 33 (7): 1328-1337

Abstract

The authors have recently developed a high-resolution microscope-integrated spectral domain optical coherence tomography (MIOCT) device designed to enable OCT acquisition simultaneous with surgical maneuvers. The purpose of this report is to describe translation of this device from preclinical testing into human intraoperative imaging.Before human imaging, surgical conditions were fully simulated for extensive preclinical MIOCT evaluation in a custom model eye system. Microscope-integrated spectral domain OCT images were then acquired in normal human volunteers and during vitreoretinal surgery in patients who consented to participate in a prospective institutional review board-approved study. Microscope-integrated spectral domain OCT images were obtained before and at pauses in surgical maneuvers and were compared based on predetermined diagnostic criteria to images obtained with a high-resolution spectral domain research handheld OCT system (HHOCT; Bioptigen, Inc) at the same time point. Cohorts of five consecutive patients were imaged. Successful end points were predefined, including =80% correlation in identification of pathology between MIOCT and HHOCT in =80% of the patients.Microscope-integrated spectral domain OCT was favorably evaluated by study surgeons and scrub nurses, all of whom responded that they would consider participating in human intraoperative imaging trials. The preclinical evaluation identified significant improvements that were made before MIOCT use during human surgery. The MIOCT transition into clinical human research was smooth. Microscope-integrated spectral domain OCT imaging in normal human volunteers demonstrated high resolution comparable to tabletop scanners. In the operating room, after an initial learning curve, surgeons successfully acquired human macular MIOCT images before and after surgical maneuvers. Microscope-integrated spectral domain OCT imaging confirmed preoperative diagnoses, such as full-thickness macular hole and vitreomacular traction, and demonstrated postsurgical changes in retinal morphology. Two cohorts of five patients were imaged. In the second cohort, the predefined end points were exceeded with =80% correlation between microscope-mounted OCT and HHOCT imaging in 100% of the patients.This report describes high-resolution MIOCT imaging using the prototype device in human eyes during vitreoretinal surgery, with successful achievement of predefined end points for imaging. Further refinements and investigations will be directed toward fully integrating MIOCT with vitreoretinal and other ocular surgery to image surgical maneuvers in real time.

View details for Web of Science ID 000330470700005

View details for PubMedID 23538579