Novel multiarm PEG-based hydrogels for tissue engineering JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A Tan, H., DeFail, A. J., Rubin, J. P., Chu, C. R., Marra, K. G. 2010; 92A (3): 979-987

Abstract

Injectable scaffolds are promising substrates for regenerative medicine applications. In this study, multiarm amino-terminated poly(ethylene glycol) (PEG) hydrogels were crosslinked with genipin, a compound naturally derived from the gardenia fruit. Four- and eight-arm amino-terminated PEG hydrogels crosslinked with varying concentrations of genipin were characterized. Both surface and cross-sectional structures of PEG-based hydrogels were observed by scanning electron microscopy. In vitro gelation time, water uptake, swelling, and weight loss of PEG hydrogels in phosphate buffered saline at 37 degrees C were studied. The results showed that the eight-arm PEG demonstrated a much slower gelation time compared with the four-arm PEG, which may be due to the differing structures of the multiarm PEG hydrogels, which in turn affects the ability of genipin to react with the amine groups. Human adipose-derived stem cells were seeded onto the four- and eight-arm PEG hydrogels in vitro to assess the biological performance and applicability of the gels as cell carriers. The four-arm PEG hydrogel resulted in enhanced cell adhesion when compared with the eight-arm PEG hydrogel. Overall, these characteristics provide a potential opportunity for multiarm PEG hydrogels as injectable scaffolds in a variety of tissue engineering applications.

View details for DOI 10.1002/jbm.a.32438

View details for Web of Science ID 000274307600018

View details for PubMedCentralID PMC2811768