Intranasal oxytocin administration attenuates the ACTH stress response in monkeys PSYCHONEUROENDOCRINOLOGY Parker, K. J., Buckmaster, C. L., Schatzberg, A. F., Lyons, D. M. 2005; 30 (9): 924-929

Abstract

Social relationships protect against the development of stress-related psychiatric disorders, yet little is known about the neurobiology that regulates this phenomenon. Recent evidence suggests that oxytocin (OT), a neuropeptide involved in social bond formation, may play a role. This experiment investigated the effects of chronic intranasal OT administration on acute stress-induced hypothalamic-pituitary-adrenal (HPA) axis activation in adult female squirrel monkeys. Subjects were randomized to one of two experimental conditions. Monkeys were intranasally administered either 50 microg oxytocin (N = 6 monkeys) or 0 microg oxytocin (N = 6 monkeys)/300 microl saline once a day for eight consecutive days. Immediately after drug administration on the eighth day, all monkeys were exposed to acute social isolation. Blood samples for determinations of adrenocorticotropic hormone (ACTH) and cortisol concentrations were collected after 30 and 90 min of stress exposure. Consistent with an anti-stress effect, OT-treated monkeys exhibited lower ACTH concentrations compared to saline-treated monkeys after 90 min of social isolation (F(1,7) = 6.891; P = 0.034). No drug-related differences in cortisol levels were observed, indicating that OT does not directly attenuate the adrenal stress response. Intranasal peptide administration has been shown to penetrate the central nervous system, and research must determine whether intranasally delivered OT exerts its effect(s) at a pituitary and/or brain level. This primate model offers critical opportunities to improve our understanding of the anti-stress effects of OT and may lead to novel pharmacological treatments for stress-related psychiatric disorders.

View details for DOI 10.1016/j.psyneuen.2005.04.002

View details for Web of Science ID 000231003800012

View details for PubMedID 15946803