Fusion of Computed Tomography and PROPELLER Diffusion-Weighted Magnetic Resonance Imaging for the Detection and Localization of Middle Ear Cholesteatoma.
Fusion of Computed Tomography and PROPELLER Diffusion-Weighted Magnetic Resonance Imaging for the Detection and Localization of Middle Ear Cholesteatoma. JAMA otolaryngology-- head & neck surgery 2016; 142 (10): 947-953Abstract
A method to optimize imaging of cholesteatoma by combining the strengths of available modalities will improve diagnostic accuracy and help to target treatment.To assess whether fusing Periodically Rotated Overlapping Parallel Lines With Enhanced Reconstruction (PROPELLER) diffusion-weighted magnetic resonance imaging (DW-MRI) with corresponding temporal bone computed tomography (CT) images could increase cholesteatoma diagnostic and localization accuracy across 6 distinct anatomical regions of the temporal bone.Case series and preliminary technology evaluation of adults with preoperative temporal bone CT and PROPELLER DW-MRI scans who underwent surgery for clinically suggested cholesteatoma at a tertiary academic hospital. When cholesteatoma was encountered surgically, the precise location was recorded in a diagram of the middle ear and mastoid. For each patient, the 3 image data sets (CT, PROPELLER DW-MRI, and CT-MRI fusion) were reviewed in random order for the presence or absence of cholesteatoma by an investigator blinded to operative findings.If cholesteatoma was deemed present on review of each imaging modality, the location of the lesion was mapped presumptively. Image analysis was then compared with surgical findings.Twelve adults (5 women and 7 men; median [range] age, 45.5 [19-77] years) were included. The use of CT-MRI fusion had greater diagnostic sensitivity (0.88 vs 0.75), positive predictive value (0.88 vs 0.86), and negative predictive value (0.75 vs 0.60) than PROPELLER DW-MRI alone. Image fusion also showed increased overall localization accuracy when stratified across 6 distinct anatomical regions of the temporal bone (localization sensitivity and specificity, 0.76 and 0.98 for CT-MRI fusion vs 0.58 and 0.98 for PROPELLER DW-MRI). For PROPELLER DW-MRI, there were 15 true-positive, 45 true-negative, 1 false-positive, and 11 false-negative results; overall accuracy was 0.83. For CT-MRI fusion, there were 20 true-positive, 45 true-negative, 1 false-positive, and 6 false-negative results; overall accuracy was 0.90.The poor anatomical spatial resolution of DW-MRI makes precise localization of cholesteatoma within the middle ear and mastoid a diagnostic challenge. This study suggests that the bony anatomic detail obtained via CT coupled with the excellent sensitivity and specificity of PROPELLER DW-MRI for cholesteatoma can improve both preoperative identification and localization of disease over DW-MRI alone.
View details for DOI 10.1001/jamaoto.2016.1663
View details for PubMedID 27414044